Mining Recurrent Activities: Fourier Analysis of Change Events

Abram Hindle, Michael Godfrey, Ric Holt University Of Waterloo, Waterloo, Canada

Developers create artifacts

Developers create various kinds of artifacts when they make changes:

source code, test suites, bug reports, documentation, mailing list messages, etc

A solution: Fourier transform

... a frequency/magnitude view which shows us dominating frequencies and periods

Software development has recurrent behaviour

How can we apply the Fourier transform to software change and software related data?

We have a signal

We apply the Fourier transform.

Investigation of each frequency bin shows that 2 authors are individually responsible for 2 bins. Their frequencies imply their periodicities.

We discover that:

- * blue commits many
- changes
- * green tests blue's commits
- * The other developers follow their own schedule.

How do we discover recurrent behaviour?

ASSUME A PERIOD A week A year Market A year

But which is correct or useful?

What period should I analyze this signal by? If only I had a tool to tell me what do!

Convert discrete events into signals

So what? Does it work?

Spectrograms of software change over time

Future Work

Who's responsible for this behaviour?

Semantic Slicing

A behaviour can be explained by a combination of slices.

Other uses of the Fourier Transform: Dynamic Analysis via call depth

Partition development time via Self Similarity

